Extensions 1→N→G→Q→1 with N=C2xC32:A4 and Q=C2

Direct product G=NxQ with N=C2xC32:A4 and Q=C2
dρLabelID
C22xC32:A436C2^2xC3^2:A4432,550

Semidirect products G=N:Q with N=C2xC32:A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC32:A4):1C2 = C2xC62:S3φ: C2/C1C2 ⊆ Out C2xC32:A4186+(C2xC3^2:A4):1C2432,535
(C2xC32:A4):2C2 = C2xC32:S4φ: C2/C1C2 ⊆ Out C2xC32:A4183(C2xC3^2:A4):2C2432,538
(C2xC32:A4):3C2 = C2xC62:C6φ: C2/C1C2 ⊆ Out C2xC32:A4186+(C2xC3^2:A4):3C2432,542

Non-split extensions G=N.Q with N=C2xC32:A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC32:A4).1C2 = C62:5Dic3φ: C2/C1C2 ⊆ Out C2xC32:A4366-(C2xC3^2:A4).1C2432,251
(C2xC32:A4).2C2 = C62:6Dic3φ: C2/C1C2 ⊆ Out C2xC32:A4363(C2xC3^2:A4).2C2432,260
(C2xC32:A4).3C2 = C62:4C12φ: C2/C1C2 ⊆ Out C2xC32:A4366-(C2xC3^2:A4).3C2432,272
(C2xC32:A4).4C2 = C4xC32:A4φ: trivial image363(C2xC3^2:A4).4C2432,333

׿
x
:
Z
F
o
wr
Q
<